Back to the Future: Agent-Based Modeling and Dynamic Microsimulation

The Economy as an Evolving Complex System IV, pp. xx–xx
DOI: 10.37911/9781947864665.02

Download chapter (PDF)

7. Back to the Future: Agent-Based Modeling and Dynamic Microsimulation

Author: Matteo Richiardi, University of Essex, Justin van de Ven, University of Essex, and Patryk Bronka, University of Essex

 

Abstract

We look at the commonalities and differences between agent-based and dynamic microsimulation analytical approaches. Starting from a shared history, we discuss how the two literatures quickly diverged. Our discussion concludes with evidence of some recent convergence between agent-based and dynamic microsimulation methods and emerging opportunities for mutual reinforcement of the two methodologies.

Bibliography

Alarid-Escudero, F., R. Gulati, and C. M. Rutter. 2020. “Validation of Microsimulation Models Used for Population Health Policy.” In Complex Systems and Population Health, edited by Y. Apostolopoulos, K. Hassmiller Lich, and M. K. Lemke. Oxford, UK: Oxford University Press.

Anderson, P. W., K. Arrow, and D. Pines. 1988. The Economy As An Evolving Complex System. 1st ed. Boca Raton, FL: CRC Press.

Andreassen, L., D. Fredriksen, H. M. Gjefsen, E. Halvorsen, and N. M. Stølen. 2020. “The Dynamic Cross-Sectional Microsimulation Model MOSART.” International Journal of Microsimulation 13 (1): 92–113. https://doi.org/10.34196/IJM.00214.

Axtell, R., and J. D. Farmer. 2025. “Agent-Based Modeling in Economics and Finance: Past, Present, and Future.” Journal of Economic Literature 63 (1): 197–287. https://doi.org/10.1257/jel.20221319.

Baekgaard, H. 2002. Micro–Macro Linkage and the Alignment of Transition Processes: Some Issues, Techniques and Examples. Technical paper 25. National Centre for Social and Economic Modelling (NATSEM).

Basu, N., R. Pryor, and T. Quint. 1998. “ASPEN: A Microsimulation Model of the Economy.” Computational Economics 12:223–241. https://doi.org/10.1023/A:1008691115079.

Beinhocker, E. 2013. “Reflexivity, Complexity, and the Nature of Social Science.” Journal of Economic Methodology 20 (4): 330–342. https://doi.org/10.1080/1350178X.2013.859403.

Bennett, R. L., and B. R. Bergmann. 1986. A Microsimulated Transactions Model of the United States Economy. Baltimore, MD: John Hopkins University Press.

Bergmann, B. R. 1974. “A Microsimulation of the Macroeconomy with Explicitly Represented Money Flows.” In Annals of Economic and Social Measurement, 3:475–489. 3. National Bureau of Economic Research. http://www.nber.org/chapters/c10173.

—. 1990. “Micro-to-Macro Simulation: A Primer With a Labor Market Example.” The Journal of Economic Perspectives 4 (1): 99–116. https://doi.org/10.1257/jep.4.1.99.

Bergmann, B. R., G. Eliasson, and G. Orcutt, eds. 1980. Micro Simulation – Models, Methods and Applications. Proceedings of a Symposium in Stockholm, Sept. 19–22, 1977. Stockholm, Sweden: The Industrial Institute for Economic and Social Research.

Bilcke, J., P. Beutels, M. Brisson, and M. Jit. 2011. “Accounting for Methodological, Structural, and Parameter Uncertainty in Decision-Analytic Models: A Practical Guide.” Medical Decision Making 31 (4): 675–692. https://doi.org/10.1177/0272989X11409240.

Brock, W. A., and C. H. Hommes. 1997. “A Rational Route to Randomness.” Econometrica 65 (5): 1059–1096. https://doi.org/10.2300/2171879.

Bronka, P., J. van de Ven, D. Kopasker, S. V. Katikireddi, and M. Richiardi. 2023. SimPaths: An Open-Source Microsimulation Model for Life Course Analysis. Technical report, Working Paper Series CEMPA6/23. Centre for Microsimulation and Policy Analysis.

Caiani, A., A. Godin, E. Caverzasi, M. Gallegati, S. Kinsella, and J. E. Stiglitz. 2016. “Agent Based-Stock Flow Consistent Macroeconomics: Towards a Benchmark Model.” Journal of Economic Dynamics and Control 69:375–408. https://doi.org/10.1016/j.jedc.2016.06.001.

Carro, A., M. Hinterschweiger, A. Uluc, and J. D. Farmer. 2023. “Heterogeneous Effects and Spillovers of Macroprudential Policy in an Agent-Based Model of the UK Housing Market.” Industrial and Corporate Change 32 (2): 386–432. https://doi.org/10.1093/icc/dtac030.

Creedy, J., G. Kalb, and H. Kew. 2007. “Confidence Intervals for Policy Reforms in Behavioural Tax Microsimulation Modelling.” Bulletin of Economic Research 59 (1): 37–65. https://doi.org/10.1111/j.0307-3378.2007.00250.x.

Dawid, H., and D. Delli Gatti. 2018. “Agent-Based Macroeconomics.” Chap. 2 in Handbook of Computational Economics, edited by C. Hommes and B. LeBaron, 4:63–156. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/bs.hescom.2018.02.006.

De Menten, G., G. Dekkers, G. Bryon, P. Liégeois, and C. O’Donoghue. 2014. “LIAM2: A New Open Source Development Tool for Discrete-Time Dynamic Microsimulation Models.” Journal of Artificial Societies and Social Simulation 17. https://doi.org/10.18564/jasss.2574.

Dyer, J., P. Cannon, J. D. Farmer, and S. M. Schmon. 2022. Black-Box Bayesian Inference for Economic Agent-Based Models, Working Paper No. 2022-05. INET Oxford. https://ideas.repec.org/p/amz/wpaper/2022-05.html.

Dyer, J., A. Quera-Bofarull, N. Bishop, J. D. Farmer, A. Calinescu, and M. Wooldridge. 2024. “Population Synthesis as Scenario Generation for Simulation-based Planning under Uncertainty.” In 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024), 490–498. International Foundation for Autonomous Agents and Multiagent Systems.

Eliasson, G. 1976. A Micro-Macro Interactive Simulation Model of the Swedish Economy. Technical report, Economic Research Report B15. Reprinted in International Journal of Microsimulation 17(24), 60–128 (2024). Federation of Swedish Industries, December. https://doi.org/10.34196/ijm.00292.

—. 1977. “Competition and Market Processes in a Simulation Model of the Swedish Economy.” The American Economic Review 67:277–281. https://www.jstor.org/stable/1815916.

—. 2018. “Why Complex, Data Demanding and Difficult to Estimate Agent Based Models? Lessons from a Decades Long Research Program.” International Journal of Microsimulation 11 (1): 4–60. https://doi.org/10.34196/IJM.00173.

Favreault, M. M., K. E. Smith, and R. W. Johnson. 2015. The Dynamic Simulation of Income Model (DYNASIM). Research Report. Urban Institute. https://www.urban.org/research/publication/dynamic-simulation-income-model-dynasim-overview.

Gillman, M. S. 2017. “GENESIS - The GENEric SImulation System for Modelling State Transitions.” Journal of Open Research Software 5 (1): 24. https://doi.org/10.5334/jors.179.

Grazzini, J., and M. Richiardi. 2015. “Estimation of Ergodic Agent-Based Models by Simulated Minimum Distance.” Journal of Economic Dynamics and Control 51:148–165. https://doi.org/10.1016/j.jedc.2014.10.006.

Jonung, L. 1991. The Stockholm School of Economics Revisited. Historical Perspectives on Modern Economics. Cambridge, UK: Cambridge University Press.

Klevmarken, A. 2022. “Microsimulation. A Tool for Economic Analysis.” International Journal of Microsimulation 15 (1): 6–14. https://doi.org/10.34196/IJM.00246.

Lee, J.-S., T. Filatova, A. Ligmann-Zielinska, B. Hassani-Mahmooei, F. Stonedahl, I. Lorscheid, A. Voinov, J. G. Polhill, Z. Sun, and D. C. Parker. 2015. “The Complexities of Agent-Based Modeling Output Analysis.” Journal of Artificial Societies and Social Simulation 18 (4): 4. https://doi.org/10.18564/jasss.2897.

Li, J., and C. O’Donoghue. 2013. “A Survey of Dynamic Microsimulation models: Uses, Model Structure and Methodology.” International Journal of Microsimulation 6 (2): 3–55. https://doi.org/10.34196/IJM.00082.

———. 2014. “Evaluating Binary Alignment Methods in Microsimulation Models.” Journal of Artificial Societies and Social Simulation 17 (1): 15. https://doi.org/10.18564/jasss.2334.

Li, J., C. O’Donoghue, and G. Dekkers. 2014. “Dynamic Microsimulation.” In Handbook of Microsimulation Modelling, edited by C. O’Donoghue, 293:305–343. Contributions to Economic Analysis. Leeds, UK: Emerald Group Publishing Limited. https://doi.org/10.1108/S0573-855520140000293009.

Makinoshima, F., and Y. Oishi. 2022. “Crowd Flow Forecasting via Agent-Based Simulations with Sequential Latent Parameter Estimation from Aggregate Observation.” Scientific Reports 12:11168. https://doi.org/10.1038/s41598-022-14646-4.

Mu, T., S. Zheng, and A. Trott. 2022. “Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally Inattentive Reinforcement Learning.” Transactions on Machine Learning Research 12. https://openreview.net/forum?id=DY1pMrmDkm.

National Research Council. 2012. Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification. Washington, DC: The National Academies Press.

Nelson, R. R., and S. G. Winter. 1982. An Evolutionary Theory of Economic Change. Cambridge, MA: Harvard University Press.

Nowak, S. A., L. J. Matthews, and A. M. Parker. 2017. A General Agent-Based Model of Social Learning. Technical report. Santa Monica, CA: RAND Corporation. https://www.rand.org/pubs/research_reports/RR1768.html.

O’Donoghue, C. 2001. “Dynamic Microsimulation: A Methodological Survey.” Brazilian Electronic Journal of Economics 4:77.

—, ed. 2014. Handbook of Microsimulation Modelling. Vol. 293. Contributions to Economic Analysis. Leeds, UK: Emerald Group Publishing Limited.

O’Donoghue, C., and G. Dekkers. 2018. “Increasing the Impact of Dynamic Microsimulation Modelling.” International Journal of Microsimulation 11 (1): 61–96. https://doi.org/10.34196/IJM.00174.

OECD. 2022. TaxBEN: The OECD Tax-Benefit Simulation Model. Technical report. Paris, France: OECD.

Orcutt, G. H. 1957. “A New Type of Socio-Economic System.” The Review of Economics and Statistics 39:116–123. https://doi.org/10.2307/1928528.

—. 1960. “Simulation of Economic Systems.” American Economic Review 50 (5): 894–907. https://www.jstor.org/stable/1810951.

—. 1962. “Microanalytic Models of the United States Economy: Need and Development.” American Economic Review 52 (2): 229–240. https://www.jstor.org/stable/1910887.

Orcutt, G. H., S. Caldwell, and R. Wertheimer. 1976. Policy Exploration Through Microanalytic Simulation. Washington, DC: Urban Institute.

Orcutt, G. H., M. Greenberger, J. Korbl, and A. M. Rivlin. 1961. Microanalysis of Socioeconomic Systems. A Simulation Study. New York, NY: Harper & Brothers.

Pangallo, M., A. Aleta, R. M. del Rio-Chanona, D. Pichler A. Martín-Corral, M. Chinazzi, F. Lafond, M. Ajelli, et al. 2024. “The Unequal Effects of the Health–Economy Trade-off During the COVID-19 Pandemic.” Nature Human Behavior 8:264–275. https://doi.org/10.1038/s41562-023-01747-x.

Platt, D. 2020. “A Comparison of Economic Agent-Based Model Calibration Methods.” Journal of Economic Dynamics and Control 113:103859. https://doi.org/10.1016/j.jedc.2020.103859.

Poledna, S., M. G. Miess, C. Hommes, and K. Rabitsch. 2023. “Economic Forecasting with an Agent-Based Model.” European Economic Review 151:104306. https://doi.org/10.1016/j.euroecorev.2022.104306.

Richiardi, M. 2018. “Agent-Based Computational Economics: What, Why, When.” In Agent-Based Models in Economics, edited by D. Delli Gatti, G. Fagiolo, M. Gallegati, M. Richiardi, and A. Russo. Cambridge, UK: Cambridge University Press.

Richiardi, M., and R. E. Richardson. 2017. “JAS-mine: A New Platform for Microsimulation and Agent-Based Modelling.” International Journal of Microsimulation 10:106–134. https://doi.org/10.34196/IJM.00151.

Savcisens, G., T. Eliassi-Rad, L. K. Hansen, L. H. Mortensen, L. Lilleholt, A. Rogers, I. Zettler, and S. Lehmann. 2023. “Using Sequences of Life-Events to Predict Human Lives.” Nature Computational Science 4:43–56. https://doi.org/10.1038/s43588-023-00573-5.

Schelling, T. C. 1971. “Dynamic Models of Segregation.” The Journal of Mathematical Sociology 1 (2): 143–186. https://doi.org/10.1080/0022250x.1971.9989794.

—. 2006. “Some Fun, Thirty-Five Years Ago.” Chap. 37 in Handbook of Computational Economics, 1st ed., edited by L. Tesfatsion and K. L. Judd, 2:1639–1644. Amsterdam, Netherlands: Elsevier.

Schofield, D. J., M. J. B. Zeppel, O. Tan, S. Lymer, M. M. Cunich, and R. N. Shrestha. 2018. “A Brief, Global History of Microsimulation Models in Health: Past Applications, Lessons Learned and Future Directions.” International Journal of Microsimulation 11 (1): 97–142. https://doi.org/10.34196/IJM.00175.

Solow, R. M. 2004. “Progress in Economics Since Tinbergen.” De Economist 152:159–160. https://doi.org/10.1023/B:ECOT.0000023252.86552.5b.

Stephensen, P. 2016. “Logit Scaling: A General Method for Alignment in Microsimulation Models.” International Journal of Microsimulation 9:89–101. https://doi.org/10.34196/IJM.00144.

van de Ven, J. 2017. “Parameterising a Detailed Dynamic Programming Model of Savings and Labour Supply using Cross-Sectional Data.” International Journal of Microsimulation 10 (1): 135–166. https://doi.org/10.34196/IJM.00152.

van de Ven, J., M. Richiardi, and P. Bronka. 2022. Dynamic Simulation of Taxes and Welfare Benefits by Database Imputation, CEMPA3/22. Centre for Microsimulation and Policy Analysis.

Ward, J. A., A. J. Evans, and N. S. Malleson. 2016. “Dynamic Calibration of Agent-Based Models Using Data Assimilation.” Royal Society Open Science 3:150703. https://doi.org/10.1098/rsos.150703.

Wu, G., A. Heppenstall, P. Meier, R. Purshouse, and N. Lomax. 2022. “A Synthetic Population Dataset for Estimating Small Area Health and Socio-Economic Outcomes in Great Britain.” Scientific Data 9 (1): 19. https://doi.org/10.1038/s41597-022-01124-9.

BACK TO The Economy as an Evolving Complex System IV