The Economy as an Evolving Complex System IV, pp. xx–xx
DOI: 10.37911/9781947864665.02
10. Cutting Through Complexity: How Data Science Can Help Policymakers Understand the World
Author: Arthur Turrell, Bank of England
Abstract
Economies are fundamentally complex and becoming more so, but the new discipline of data science—which combines programming, statistics, and domain knowledge—can help cut through that complexity, potentially with productivity benefits to boot. This chapter looks at examples of where innovations from data science are cutting through the complexities faced by policymakers in measurement, allocating resources, monitoring the natural world, making predictions, and more. These examples show the promise and potential of data science to aid policymakers, and point to where actions may be taken that would support further progress in this space.
Bibliography
Adams-Prassl, A., M. Balgova, and M. Qian. 2020. Flexible Work Arrangements in Low Wage Jobs: Evidence from Job Vacancy Data. https://doi.org/10.2139/ssrn.3695392.
Bajari, P., Z. Cen, V. Chernozhukov, M. Manukonda, S. Vijaykumar, J. Wang, R. Huerta, et al. 2023. Hedonic Prices and Quality Adjusted Price Indices Powered by AI, arXiv:2305.00044. https://doi.org/10.48550/arXiv.2305.00044.
Balashankar, A., L. Subramanian, and S. P. Fraiberger. 2023. “Predicting Food Crises Using News Streams.” Science Advances 9 (9): eabm3449. https://doi.org/10.1126/sciadv.abm3449.
Banks, A. 2023. Using Open Data to Understand Hyperlocal Differences in UK Public Transport Availability | Data Science Campus. https://datasciencecampus.ons.gov.uk/using-open-data-to-understand-hyperlocal-differences-in-uk-public-transport-availability/.
Bonelli, M., and T. Foucault. 2023. Displaced by Big Data: Evidence from Active Fund Managers. HEC Paris, HEC Research Papers Series No. 1491, 4527672. https://doi.org/10.2139/ssrn.4527672.
Bright, J., B. Ganesh, C. Seidelin, and T. Vogl. 2019. Data Science for Local Government, 33701217. https://doi.org/10.2139/ssrn.3370217.
Brynjolfsson, E., L. M. Hitt, and H. H. Kim. 2011. Strength in Numbers: How Does Data-Driven Decision-Making Affect Firm Performance?, 1819486. https://doi.org/10.2139/ssrn.1819486.
Casey, A., A. Banks, and A. King. 2022. Tracking the Price of the Lowest-Cost Grocery Items, UK, Experimental Analysis — Office for National Statistics. https://www.ons.gov.uk/economy/inflationandpriceindices/articles/trackingthelowestcostgroceryitemsukexperimentalanalysis/april2021toapril2022.
Chen, L., I. Grimstead, D. Bell, J. Karanka, L. Dimond, P. James, L. Smith, and A. Edwardes. 2021. “Estimating Vehicle and Pedestrian Activity from Town and City Traffic Cameras.” Sensors 21 (13): 4564. https://doi.org/10.3390/s21134564.
Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. 2018. “Double/Debiased Machine Learning for Treatment and Structural Parameters.” The Econometrics Journal 21 (1): C1–C68. https://doi.org/10.1111/ectj.12097.
Choi, H., and H. Varian. 2012. “Predicting the Present with Google Trends.” Economic Record 88 (s1): 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x.
Crawford, K. 2013. “The Hidden Biases in Big Data.” Harvard Business Review. https://www.microsoft.com/en-us/research/publication/the-hidden-biases-in-big-data/.
de Medeiros, M. M., N. Hoppen, and A. C. G. Maçada. 2020. “Data Science for Business: Benefits, Challenges and Opportunities.” The Bottom Line 33 (2): 149–163. https://doi.org/10.1108/BL-12-2019-0132.
Draca, M., E. Duchini, R. Rathelot, A. Turrell, and G. Vattuone. 2022. Revolution in Progress? The Rise of Remote Work in the UK. CAGE Working Paper 616. https://warwick.ac.uk/fac/soc/economics/research/centres/cage/publications/workingpapers/2022/revolution_in_progress_the_rise_of_remote_work_in_the_uk/.
Duchini, E., S. Simion, A. Turrell, and J. Blundell. 2022. Pay Transparency and Gender Equality, arXiv:2006.16099. https://doi.org/10.48550/arXiv.2006.16099.
Engin, Z., and P. Treleaven. 2019. “Algorithmic Government: Automating Public Services and Supporting Civil Servants in Using Data Science Technologies.” The Computer Journal 62 (3): 448–460. https://doi.org/10.1093/comjnl/bxy082.
Erman, S., E. Rancourt, Y. Beaucage, and A. Loranger. 2022. “The Use of Data Science in a National Statistical Office.” Harvard Data Science Review 4 (4). https://doi.org/10.1162/99608f92.13e1d60e.
Goodman, A. C. 1998. “Andrew Court and the Invention of Hedonic Price Analysis.” Journal of Urban Economics 44 (2): 291–298. https://doi.org/10.1006/juec.1997.2071.
Gove, M., and A. Haldane. 2022. Levelling Up the United Kingdom. White Paper 604. Department for Levelling Up, Housing and Communities. https://www.gov.uk/government/publications/levelling-up-the-united-kingdom.
Henderson, J. V., A. Storeygard, and D. N. Weil. 2012. “Measuring Economic Growth from Outer Space.” American Economic Review 102 (2): 994–1028. https://doi.org/10.1257/aer.102.2.994.
Hoffmann, M., F. Nagle, and Y. Zhou. 2024. The Value of Open Source Software, 4693148. https://doi.org/10.2139/ssrn.4693148.
Hoolohan, V. 2023. Regional Consumer Card Spending, UK. https://www.ons.gov.uk/economy/economicoutputandproductivity/output/articles/regionalconsumercardspendinguk/2019to2023.
Hosseini, R., K. Yang, A. Chen, and S. Patra. 2021. A Flexible Forecasting Model for Production Systems, arXiv:2105.01098. https://doi.org/10.48550/arXiv.2105.01098.
Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering 9 (03): 90–95. https://doi.org/10.1109/MCSE.2007.55.
Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, et al. 2021. “Highly Accurate Protein Structure Prediction with AlphaFold.” Nature 596 (7873): 583–589. https://doi.org/10.1038/s41586-021-03819-2.
Kalamara, E., A. Turrell, C. Redl, G. Kapetanios, and S. Kapadia. 2022. “Making Text Count: Economic Forecasting Using Newspaper Text.” Journal of Applied Econometrics 37 (5): 896–919. https://doi.org/10.1002/jae.2907.
Kaur, J. N., E. Kiciman, and A. Sharma. 2022. Modeling the Data-Generating Process Is Necessary for Out-of-Distribution Generalization, arXiv:2206.07837. https://doi.org/10.48550/arXiv.2206.07837.
Lam, R., A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, et al. 2023. “Learning Skillful Medium-Range Global Weather Forecasting.” Science. https://doi.org/10.1126/science.adi2336.
Lazer, D., R. Kennedy, G. King, and A. Vespignani. 2014. “The Parable of Google Flu: Traps in Big Data Analysis.” Science 343 (6176): 1203–1205. https://doi.org/10.1126/science.1248506.
Liu, Y., S. Le, Y. Zou, M. Sadeghi, P. Gentine, Y. Chen, and N. Andela. 2023. “A Simplified Machine Learning Based Wildfire Ignition Model from an Insurance Perspective.” In ICLR 2023 Workshop on Tackling Climate Change with Machine Learning.
Loomis, J., S. Koontz, H. Miller, and L. Richardson. 2015. “Valuing Geospatial Information: Using the Contingent Valuation Method to Estimate the Economic Benefits of Landsat Satellite Imagery.” Photogrammetric Engineering & Remote Sensing 81 (8): 647–656. https://doi.org/10.14358/PERS.81.8.647.
Lucas, R. E. 1976. “Econometric Policy Evaluation: A Critique.” In The Phillips Curve and Labor Markets, edited by K. Brunner and A. H. Meltzer, 1:19–46. Amsterdam, Netherlands: North-Holland.
Luiten, A., J. Hox, and E. de Leeuw. 2020. “Survey Nonresponse Trends and Fieldwork Effort in the 21st Century: Results of an International Study across Countries and Surveys.” Journal of Official Statistics 36 (3): 469–487. https://doi.org/10.2478/jos-2020-002.
Mangalathu, S., H. Sun, C. C. Nweke, Z. Yi, and H. V. Burton. 2020. “Classifying Earthquake Damage to Buildings Using Machine Learning.” Earthquake Spectra 36 (1): 183–208. https://doi.org/10.1177/8755293019878137.
McInnes, L., J. Healy, and J. Melville. 2020. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, arXiv:1802.03426. https://doi.org/10.48550/arXiv.1802.03426.
Mealy, P., and D. Coyle. 2022. “To Them That Hath: Economic Complexity and Local Industrial Strategy in the UK.” International Tax and Public Finance 29 (2): 358–377. https://doi.org/10.1007/s10797-021-09667-0.
Misuraca, Gianluca, and Colin van Noordt. 2020. AI Watch — Artificial Intelligence in Public Services. EUR 30255 EN. JRC120399. Luxembourg, Belgium: Publications Office of the European Union. https://doi.org/10.2760/039619.
Müller, O., M. Fay, and J. vom Brocke. 2018. “The Effect of Big Data and Analytics on Firm Performance: An Econometric Analysis Considering Industry Characteristics.” Journal of Management Information Systems 35 (2): 488–509. https://doi.org/10.1080/07421222.2018.1451955.
Nuñez, J. R., C. R. Anderton, and R. S. Renslow. 2018. “Optimizing Colormaps with Consideration for Color Vision Deficiency to Enable Accurate Interpretation of Scientific Data.” PLOS One 13 (7): e0199239. https://doi.org/10.1371/journal.pone.0199239.
Ravuri, S., K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, et al. 2021. “Skilful Precipitation Nowcasting Using Deep Generative Models of Radar.” Nature 597 (7878): 672–677. https://doi.org/10.1038/s41586-021-03854-z.
Ren, S., K. He, R. Girshick, and J. Sun. 2017. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (6): 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031.
Stedman, R. C., N. A. Connelly, T. A. Heberlein, D. J. Decker, and S. B. Allred. 2019. “The End of the (Research) World As We Know It? Understanding and Coping With Declining Response Rates to Mail Surveys.” Society & Natural Resources 32 (10): 1139–1154. https://doi.org/10.1080/08941920.2019.1587127.
Taylor, S. J., and B. Letham. 2017. “Forecasting at Scale.” PeerJ Preprints e3190v2. https://doi.org/10.7287/peerj.preprints.3190v2.
Teng, M., A. Elmustafa, B. Akera, H. Larochelle, and D. Rolnick. 2023. Bird Distribution Modelling Using Remote Sensing and Citizen Science Data, arXiv:2305.01079. https://doi.org/10.48550/arXiv.2305.01079.
Tschannen, M., O. Bachem, and M. Lucic. 2018. Recent Advances in Autoencoder-Based Representation Learning, arXiv:1812.05069. https://doi.org/10.48550/arXiv.1812.05069.
Turrell, A., B. J. Speigner, J. Djumalieva, D. Copple, and J. Thurgood. 2019. Transforming Naturally Occurring Text Data Into Economic Statistics: The Case of Online Job Vacancy Postings. Working Paper 25837. https://doi.org/10.3386/w25837.
Wang, C.-Y., I.-H. Yeh, and Hong-Yuan M. Liao. 2024. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information, arXiv:2402.13616. https://doi.org/10.48550/arXiv.2402.13616.
Woloszko, N. 2020. Tracking Activity in Real Time with Google Trends. Technical report. Paris: OECD. https://doi.org/10.1787/6b9c7518-en.