Enhancing Labor Markets' Resilience in Preparation for the Net-Zero Transition

24. Beyond Efficiency: Labor-Market Resilience in an Age of AI and Net Zero

Authors:
R. Maria del Rio-Chanona, University College London and Complexity Science Hub
Morgan R. Frank, University of Pittsburgh
Penny Mealy, University of Oxford, Santa Fe Institute, and Monash University
Esteban Moro, Northeastern University and Massachusetts Institute of Technology
Ljubica Nedelkoska, Complexity Science Hub and Central European University

 

Abstract

The future of work is increasingly uncertain. With new technologies such as generative artificial intelligence (AI) and the transition to a green economy driving unprecedented change, workers are navigating an evolving labor market that is constantly being pushed out of equilibrium. While labor economics has traditionally emphasized the importance of labor market efficiency, this chapter stresses the importance of analyzing the resilience of labor markets in the face of disruption. We discuss how a complexity-based approach opens up new and important avenues for studying the labor market from an evolutionary perspective, and we highlight recent work that has combined increasingly granular occupational data with network analysis, agent-based modeling, machine learning and other techniques to provide important and policy-relevant insights into labor market resilience. This approach is especially advantageous for modeling transition periods of significant job disruption when labor markets are constantly changing. During economic change, these models can simulate policy outcomes before they are implemented, thus offering the best opportunity to shape resilience through policy interventions.

Keywords: technological disruption, artificial intelligence, net-zero transition, sustainability, employment, inequality, networks, agent-based modeling, complex systems

Bibliography

Abadie, A. 2021. “Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects.” Journal of Economic Literature 59 (2): 391–425. https://doi.org/10.1257/jel.20191450.

Acemoglu, D. 2002. “Technical Change, Inequality, and the Labor Market.” Journal of Economic Literature 40 (1): 7–72. https://doi.org/10.1257/0022051026976.

Acemoglu, D., and D. Autor. 2011. “Skills, Tasks, and Technologies: Implications for Employment and Earnings.” In Handbook of Labor Economics, edited by D. Card and O. Ashenfelter, vol. 4B, 1043–1171. Amsterdam: North Holland. https://doi.org/10.1016/S0169-7218(11)02410-5.

Acemoglu, D., and P. Restrepo. 2020. “Robots and Jobs: Evidence from US Labor Markets.” Journal of Political Economy 128 (6): 2188–2244. https://doi.org/10.1086/705716.

Alabdulkareem, A., M. R. Frank, L. Sun, B. AlShebli, C. Hidalgo, and I. Rahwan. 2018. “Unpacking the Polarization of Workplace Skills.” Science Advances 4 (7). https://doi.org/10.1126/sciadv.aao6030.

Angrist, J., P. Azoulay, G. Ellison, R. Hill, and S. F. Lu. 2017. “Economic Research Evolves: Fields and Styles.” American Economic Review 107 (5): 293–297. https://doi.org/10.1257/aer.p20171117.

Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ: Princeton University Press.

Aral, S. 2016. “Networked Experiments.” In The Oxford Handbook of the Economics of Networks, edited by Y. Bramoullé, A. Galeotti, and B. W. Rogers, 376–411. New York: Oxford University Press.

Aufiero, S., G. De Marzo, A. Sbardella, and A. Zaccaria. 2024. “Mapping Job Fitness and Skill Coherence into Wages: An Economic Complexity Analysis.” Scientific Reports 14 (1): 11752. https://doi.org/10.1038/s41598-024-61448-x.

Autor, D., and N. Thompson. 2025. “Expertise.” Journal of the European Economic Association 23 (4): 1203–1271. https://doi.org/10.1093/jeea/jvaf023.

Autor, D. H. 2019. “Work of the Past, Work of the Future.” AEA Papers and Proceedings 109: 1–32. https://doi.org/10.1257/pandp.20191110.

Autor, D. H., L. F. Katz, and M. S. Kearney. 2008. “Trends in US Wage Inequality: Revising the Revisionists.” The Review of Economics and Statistics 90 (2): 300–323. https://doi.org/10.1162/rest.90.2.300.

Axtell, R. L., O. A. Guerrero, and E. López. 2019. “Frictional Unemployment on Labor Flow Networks.” Journal of Economic Behavior & Organization 160: 184–201. https://doi.org/10.1016/j.jebo.2019.02.028.

Belot, M., P. Kircher, and P. Muller. 2022. “How Wage Announcements Affect Job Search—A Field Experiment.” American Economic Journal: Macroeconomics 14 (4): 1–67. https://doi.org/10.1257/mac.20200116.

Berryman, A. K., J. Bücker, F. S. de Moura, P. Barbrook-Johnson, M. Hanusch, P. Mealy, J. D. Farmer, and R. M. del Rio-Chanona. 2025. Skill and Spatial Mismatches for Sustainable Development in Brazil. arXiv preprint 2503.05310. https://doi.org/10.48550/arXiv.2503.05310.

Bocquet, L. 2022. “The Network Origin of Slow Labor Reallocation.” PSE Working Papers, no. 2022-17. https://shs.hal.science/halshs-03703862.

Brynjolfsson, E., and T. Mitchell. 2017. “What Can Machine Learning Do? Workforce Implications.” Science 358 (6370): 1530–1534. https://doi.org/10.1126/science.aap8062.

Bücker, J., R. M. del Rio-Chanona, A. Pichler, M. C. Ives, and J. D. Farmer. 2025. “Employment Dynamics in a Rapid Decarbonization of the US Power Sector.” Joule 9 (2): 101803. https://doi.org/10.1016/j.joule.2024.12.004.

Buldyrev, S. V., R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. 2010. “Catastrophic Cascade of Failures in Interdependent Networks.” Nature 464 (7291): 1025–1028. https://doi.org/10.1038/nature08932.

Caccioli, F., M. Shrestha, C. Moore, and J. D. Farmer. 2014. “Stability Analysis of Financial Contagion Due to Overlapping Portfolios.” Journal of Banking & Finance 46: 233–245. https://doi.org/10.1016/j.jbankfin.2014.05.021.

Caliendo, M., D. A. Cobb-Clark, C. Obst, and A. Uhlendorff. 2023. “Risk Preferences and Training Investments.” Journal of Economic Behavior & Organization 205: 668–686. https://doi.org/10.1016/j.jebo.2022.11.024.

Card, D. 1990. “The Impact of the Mariel Boatlift on the Miami Labor Market.” ILR Review 43 (2): 245–257. https://doi.org/10.2307/2523702.

Ceritoglu, E., H. B. Gurcihan Yunculer, H. Torun, and S. Tumen. 2017. “The Impact of Syrian Refugees on Natives’ Labor Market Outcomes in Turkey: Evidence from a Quasi-Experimental Design.” IZA Journal of Labor Policy 6: 1–28. https://doi.org/10.1186/s40173-017-0082-4.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. 2018. “Double/Debiased Machine Learning for Treatment and Structural Parameters.” The Econometrics Journal 21 (1): C1–C68. https://doi.org/10.1111/ectj.12097.

Das, S., S. Steffen, W. Clarke, P. Reddy, E. Brynjolfsson, and M. Fleming. 2020. “Learning Occupational Task-Shares Dynamics for the Future of Work.” In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 36–42. Washington, DC: AAAI Press.

Davis, J. M. V., and S. B. Heller. 2017. “Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs.” American Economic Review 107 (5): 546–550. https://doi.org/10.1257/aer.p20171000.

Dawid, H., S. Gemkow, P. Harting, K. Kabus, M. Neugart, and K. Wersching. 2008. “Skills, Innovation, and Growth: An Agent-Based Policy Analysis.” Jahrbücher für Nationalökonomie und Statistik 228 (2–3): 251–275. https://doi.org/10.1515/jbnst-2008-2-307.

del Rio-Chanona, R. M., A. Hermida-Carrillo, M. Sepahpour-Fard, L. Sun, R. Topinkova, and L. Nedelkoska. 2023. “Mental Health Concerns Precede Quits: Shifts in the Work Discourse During the Covid-19 Pandemic and Great Resignation.” EPJ Data Science 12 (1): 49. https://doi.org/10.1140/epjds/s13688-023-00417-2.

del Rio-Chanona, R. M., P. Mealy, M. Beguerisse-Díaz, F. Lafond, and J. D. Farmer. 2021. “Occupational Mobility and Automation: A Data-Driven Network Model.” Journal of the Royal Society Interface 18 (174): 20200898. https://doi.org/10.1098/rsif.2020.0898.

del Rio-Chanona, R. M., P. Mealy, A. Pichler, F. Lafond, and J. D. Farmer. 2020. “Supply and Demand Shocks in the COVID-19 Pandemic: An Industry and Occupation Perspective.” Oxford Review of Economic Policy 36 (Supplement_1): S94–S137. https://doi.org/10.1093/oxrep/graa033.

Dippel, C., R. Gold, S. Heblich, and R. Pinto. 2017. Instrumental Variables and Causal Mechanisms: Unpacking the Effect of Trade on Workers and Voters. Working Paper 23209. National Bureau of Economic Research. https://doi.org/10.3386/w23209.

Dosi, G., R. R. Nelson, and S. G. Winter. 2000. The Nature and Dynamics of Organizational Capabilities. Oxford, UK: Oxford University Press.

Dosi, G., M. C. Pereira, A. Roventini, and M. E. Virgillito. 2018. “The Effects of Labour Market Reforms upon Unemployment and Income Inequalities: An Agent-Based Model.” Socio-Economic Review 16 (4): 687–720. https://doi.org/10.1093/ser/mwx054.

Dosi, G., and M. E. Virgillito. 2024. “Minimum Wage for Italy: From Social Justice to Productive Efficiency.” Intereconomics 59 (4): 231–235. https://www.intereconomics.eu/contents/year/2024/number/4/article/minimum-wage-for-italy-from-social-justice-to-productive-efficiency.html.

Duffy, J., and B. C. Jenkins. 2024. “Search, Unemployment, and the Beveridge Curve: Experimental Evidence.” Labour Economics 87: 102518. https://doi.org/10.1016/j.labeco.2024.102518.

Elliott, M., B. Golub, and M. O. Jackson. 2014. “Financial Networks and Contagion.” American Economic Review 104 (10): 3115–3153. https://doi.org/10.1257/aer.104.10.3115.

Eloundou, T., S. Manning, P. Mishkin, and D. Rock. 2024. “GPTs Are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models.” Science 384 (6702): 1306–1308. https://doi.org/10.1126/science.adj0998.

Epstein, Z., A. Hertzmann, and the Investigators of Human Creativity. 2023. “Art and the Science of Generative AI.” Science 380 (6650): 1110–1111. https://doi.org/10.1126/science.adh4451.

Fagiolo, G., G. Dosi, and R. Gabriele. 2004. “Matching, Bargaining, and Wage Setting in an Evolutionary Model of Labor Market and Output Dynamics.” Advances in Complex Systems 7: 157–186. Singapore: World Scientific.

Fair, K. R., and O. A. Guerrero. 2025. “Endogenous Labour Flow Networks.” EPJ Data Science 14 (1): 39. https://doi.org/10.1140/epjds/s13688-025-00539-9.

Farmer, J. D. 2024. Making Sense of Chaos: A Better Economics for a Better World. New Haven, CT: Yale University Press.

Farmer, J. D., and D. Foley. 2009. “The Economy Needs Agent-Based Modelling.” Nature 460 (7256): 685–686. https://doi.org/10.1038/460685a.

Frank, M., Y.-Y. Ahn, and E. Moro. 2025. “AI Exposure Predicts Unemployment Risk.” PNAS Nexus 4 (4): pgaf107. https://doi.org/10.1093/pnasnexus/pgaf107.

Frank, M. R., D. Autor, J. E. Bessen, E. Brynjolfsson, M. Cebrian, D. J. Deming, M. Feldman, et al. 2019. “Toward Understanding the Impact of Artificial Intelligence on Labor.” Proceedings of the National Academy of Sciences 116 (14): 6531–6539. https://doi.org/10.1073/pnas.190094911.

Frank, M. R., E. Moro, T. South, A. Rutherford, A. Pentland, B. Taska, and I. Rahwan. 2024. “Network Constraints on Worker Mobility.” Nature Cities 1 (1): 94–104. https://doi.org/10.1038/s44284-023-00009-1.

Hernán, M. A. 2021. “Methods of Public Health Research—Strengthening Causal Inference from Observational Data.” New England Journal of Medicine 385 (15): 1345–1348. https://doi.org/10.1056/NEJMp2113319.

Hirvonen, J., A. Stenhammar, and J. Tuhkuri. 2022. New Evidence on the Effect of Technology on Employment and Skill Demand. Working Paper no. 93. The Research Institute of the Finnish Economy (ETLA), Helsinki. https://hdl.handle.net/10419/273019.

Hong, I., M. R. Frank, I. Rahwan, W.-S. Jung, and H. Youn. 2020. “The Universal Pathway to Innovative Urban Economies.” Science Advances 6 (34): eaba4934. https://doi.org/10.1126/sciadv.aba4934.

Innocenti, S., and M. Golin. 2022. “Human Capital Investment and Perceived Automation Risks: Evidence from 16 Countries.” Journal of Economic Behavior & Organization 195: 27–41. https://doi.org/10.1016/j.jebo.2021.12.027.

Kant, J.-D., G. Ballot, and O. Goudet. 2020. “WorkSim: An Agent-Based Model of Labor Markets.” Journal of Artificial Societies and Social Simulation 23 (4). https://doi.org/10.18564/jasss.4396.

Kässi, O., and V. Lehdonvirta. 2018. “Online Labour Index: Measuring the Online Gig Economy for Policy and Research.” Technological Forecasting and Social Change 137: 241–248. https://doi.org/10.1016/j.techfore.2018.07.056.

Knaus, M. C. 2022. “Double Machine Learning-based Programme Evaluation Under Unconfoundedness.” The Econometrics Journal 25 (3): 602–627. https://doi.org/10.1093/ectj/utac015.

Knaus, M. C., M. Lechner, and A. Strittmatter. 2021. “Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence.” The Econometrics Journal 24 (1): 134–161. https://doi.org/10.1093/ectj/utaa014.

Korinek, A. 2024. Economic Policy Challenges for the Age of AI. Working Paper 32980. National Bureau of Economic Research. https://doi.org/10.3386/w32980.

Kreiss, A., and C. Rothe. 2023. “Inference in Regression Discontinuity Designs with High-Dimensional Covariates.” The Econometrics Journal 26 (2): 105–123. https://doi.org/10.1093/ectj/utac029.

Le Barbanchon, T., R. Rathelot, and A. Roulet. 2021. “Gender Differences in Job Search: Trading Off Commute Against Wage.” The Quarterly Journal of Economics 136 (1): 381–426. https://doi.org/10.1093/qje/qjaa033.

Lim, J., M. Aklin, and M. R. Frank. 2023. “Location Is a Major Barrier for Transferring US Fossil Fuel Employment to Green Jobs.” Nature Communications 14 (1). https://doi.org/10.1038/s41467-023-41133-9.

Manning, B. S., K. Zhu, and J. J. Horton. 2024. Automated Social Science: Language Models as Scientist and Subjects. Working Paper 32381. National Bureau of Economic Research. https://doi.org/10.3386/w32381.

McGee, P., and A. McGee. 2025. “Gender Differences in Reservation Wages in Search Experiments.” Labour Economics 94: 102698. https://doi.org/10.1016/j.labeco.2025.102698.

Mealy, P., R. M. del Rio-Chanona, and J. D. Farmer. 2018. “What You Do at Work Matters: New Lenses on Labour.” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3143064.

Michaillat, P., and E. Saez. 2021. “Beveridgean Unemployment Gap.” Journal of Public Economics Plus 2: 100009. https://doi.org/10.1016/j.pubecp.2021.100009.

Moro, E., M. R. Frank, A. Pentland, A. Rutherford, M. Cebrian, and I. Rahwan. 2021. “Universal Resilience Patterns in Labor Markets.” Nature Communications 12 (1): 1972. https://doi.org/10.1038/s41467-021-22086-3.

Nedelkoska, L., S. G. Matha, J. McNerney, A. Assumpcao, D. Diodato, and F. Neffke. 2021. Eight Decades of Changes in Occupational Tasks, Computerization and the Gender Pay Gap. CID Working Paper 151. Center for International Development at Harvard University.

Nedelkoska, L., and G. Quintini. 2018. “Automation, Skills Use and Training.” OECD Social, Employment and Migration Working Papers, no. 202. https://doi.org/10.1787/2e2f4eea-en.

Neffke, F., and M. Henning. 2013. “Skill Relatedness and Firm Diversification.” Strategic Management Journal 34 (3): 297–316. https://doi.org/10.1002/smj.2014.

Neffke, F., L. Nedelkoska, and S. Wiederhold. 2024. “Skill Mismatch and the Costs of Job Displacement.” Research Policy 53 (2): 104933.

Neffke, F., A. Sbardella, U. Schetter, and A. Tacchella. 2025. “Economic Complexity Analysis.” In The Economy as an Evolving Complex System IV, edited by J. Bednar, E. D. Beinhocker, R. M. del Rio-Chanona, J. D. Farmer, J. Kaszowska-Mojsa, F. Lafond, P. Mealy, M. Pangallo, and A. Pichler. Santa Fe, NM: SFI Press.

Neugart, M. 2008. “Labor Market Policy Evaluation with ACE.” Journal of Economic Behavior & Organization 67 (2): 418–430. https://doi.org/10.1016/j.jebo.2006.12.006.

Neugart, M., and M. Richiardi. 2018. “Agent-Based Models of the Labor Market.” In The Oxford Handbook of Computational Economics and Finance, edited by S.-H. Chen, M. Kaboudan, and Y.-R. Du, 667–687. https://doi.org/10.1093/oxfordhb/9780199844371.013.24.

Nie, X., and S. Wager. 2021. “Quasi-Oracle Estimation of Heterogeneous Treatment Effects.” Biometrika 108 (2): 299–319. https://doi.org/10.1093/biomet/asaa076.

O’Clery, N., and S. Kinsella. 2022. “Modular Structure in Labour Networks Reveals Skill Basins.” Research Policy 51 (5): 104486. https://doi.org/10.1016/j.respol.2022.104486.

Pager, D., and D. S. Pedulla. 2015. “Race, Self-Selection, and the Job Search Process.” American Journal of Sociology 120 (4): 1005–1054. https://doi.org/10.1086/681072.

Pangallo, M., A. Aleta, R. M. del Rio-Chanona, A. Pichler, D. Martín-Corral, M. Chinazzi, F. Lafond, et al. 2024. “The Unequal Effects of the Health–Economy Trade-Off During the COVID-19 Pandemic.” Nature Human Behaviour 8 (2): 264–275. https://doi.org/10.1038/s41562-023-01747-x.

Pangallo, M., and R. M. del Rio-Chanona. 2025. “Data-Driven Economic Agent-Based Models.” In The Economy as an Evolving Complex System IV, edited by J. Bednar, E. D. Beinhocker, R. M. del Rio-Chanona, J. D. Farmer, J. Kaszowska-Mojsa, F. Lafond, P. Mealy, M. Pangallo, and A. Pichler. Santa Fe, NM: SFI Press.

Pichler, A., M. Pangallo, R. M. del Rio-Chanona, F. Lafond, and J. D. Farmer. 2022. “Forecasting the Propagation of Pandemic Shocks with a Dynamic Input–Output Model.” Journal of Economic Dynamics and Control 144: 104527. https://doi.org/10.1016/j.jedc.2022.104527.

Rajkumar, K., G. Saint-Jacques, I. Bojinov, E. Brynjolfsson, and S. Aral. 2022. “A Causal Test of the Strength of Weak Ties.” Science 377 (6612): 1304–1310. https://doi.org/10.1126/science.abl4476.

Richiardi, M. 2006. “Toward a Non-Equilibrium Unemployment Theory.” Computational Economics 28 (4): 421–446. https://doi.org/10.1007/s10614-006-9050-6.

Richiardi, M., and J. van de Ven. 2025. “Back to the Future: Agent-Based Modeling and Dynamic Microsimulation.” In The Economy as an Evolving Complex System IV, edited by J. Bednar, E. D. Beinhocker, R. M. del Rio-Chanona, J. D. Farmer, J. Kaszowska-Mojsa, F. Lafond, P. Mealy, M. Pangallo, and A. Pichler. Santa Fe, NM: SFI Press.

Rothstein, J., and T. von Wachter. 2017. “Social Experiments in the Labor Market.” In Handbook of Economic Field Experiments, edited by A. V. Banerjee and E. Duflo, vol. 2, 555–637. Amsterdam: Elsevier. https://doi.org/10.1016/bs.hefe.2016.10.001.

Saussay, A., M. Sato, F. Vona, and L. O’Kane. 2022. Who’s Fit for the Low-Carbon Transition? Emerging Skills and Wage Gaps in Job Ad Data. Centre for Climate Change Economics and Policy Working Paper no. 406 and Grantham Research Institute on Climate Change and the Environment Working Paper no. 381. https://www.frbsf.org/wp-content/uploads/working-paper-381-Saussay-et-al.pdf.

Shen, Q. 1998. “Location Characteristics of Inner-City Neighborhoods and Employment Accessibility of Low-Wage Workers.” Environment and Planning B: Planning and Design 25 (3): 345–365. https://doi.org/10.1068/b250345.

Teutloff, O., J. Einsiedler, O. Kässi, F. Braesemann, P. Mishkin, and R. M. del Rio-Chanona. 2025. “Winners and Losers of Generative AI: Early Evidence of Shifts in Freelancer Demand.” Journal of Economic Behavior & Organization, 106845. https://doi.org/10.1016/j.jebo.2024.106845.

Thaler, R. H. 2016. “Behavioral Economics: Past, Present, and Future.” American Economic Review 106 (7): 1577–1600. https://doi.org/10.1257/aer.106.7.1577.

Vespignani, A. 2010. “The Fragility of Interdependency.” Nature 464 (7291): 984–985. https://doi.org/10.1038/464984a.

vom Lehn, C., C. Ellsworth, and Z. Kroff. 2022. “Reconciling Occupational Mobility in the Current Population Survey.” Journal of Labor Economics 40 (4): 1005–1051. https://doi.org/10.1086/718563.

Wagner, A. 1999. “Causality in Complex Systems.” Biology and Philosophy 14: 83–101. https://doi.org/10.1023/A:1006580900476.

Witt, U. 2008. “What Is Specific about Evolutionary Economics?” Journal of Evolutionary Economics 18: 547–575. https://doi.org/10.1007/s00191-008-0107-7.

BACK TO The Economy as an Evolving Complex System IV